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Stationarity Detection in the Initial Transient Problem

Soren Asmussen" Peter W. Glynnt Hermann Thorissont

Abstract

Let X = {X(t)}>0 be a stochastic process with a stationary version X*. It is investigated
when it is possible to generate by simulation a version JX of X with lower initial bias than
X itself, in the sense that either XC is stationary (has the same distribution as X*) or
the distribution of X is close to the distribution of X*. Particular attention is given to
regenerative processes and Markov processes with a finite, countable or general state space.
The results are both positive and negative, and indicate that the tail of the distribution of
the cycle length r plays a critical role. The negative results essentially state that without
some information on this tail, no apriori computable bias reduction is possible; in particular,
this is the case for the class of all Markov processes with a countably infinite state space.
On the contrary, the positive results give algorithms for simulating k for various classes of
processes with some special structure on r, for example finite state Markov chains, Markov
chains satisfying a Doeblin type minorization, and regenerative processes with r having a
bounded (p + 1)th moment or having a stationary age distribution that can be generated by
simulation.

1 Introduction

When performing a steady-state simulation, simulators are often concerned with the problem of
dealing with the initial transient. The term 'initial transient' refers to that initial segment of the
simulation that is contaminated by bias introduced by starting the system in some state that
is not typical of the long-run behaviour of the system. The observations gathered during the
initial transient are therefore not representative of the steady-state behavior of the system and
are biased. Perhaps the most popular means of dealing with the initial transient is to discard
the observations gathered during this period. In other words, the simulator lets the simulation
'warm up' before collecting any observations.

Of course, the key question is to determine how long the 'warm up' period must be for a
given simulation. An essentially equivalent formulation of the problem is to identify that time
at which the initial transient terminates and steady-state behavior begins. Since steady-state
behavior is characterized by stationarity of the stochastic process, we can therefore view the
initial transient problem as involving the determination of that time at which the simulation
is behaving like a stationary stochastic process. This paper is concerned with the question of
existence and construction of such stationarity detection times (and suitable generalizations).

This is a problem that has challenged the simulation community for many years. Among the
papers that have addressed this question are [9], [12], [30], [31], and [23]; see also [11] and [19].
It is probably safe to say that no technique yet proposed satisfactorily solves this problem. It--
is also worth noting that when one estimates the steady-state via multiple replications of the
process, the ability to determine the end of the initial transient is enhanced. The basic idea
is that by averaging over multiple replicates, much of the variability in the system is damped
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out, so that the convergence to steady-state is easier to determine. Among the papers that
take advantage of this idea are [18], [27], [28]. In the current paper, our interest focuses on
stationarity detection rules that are based on a single run of the system.

We will see, in Section 2 of the paper, precisely why the initial transient problem has been
so challenging. We will prove, in a mathematically precise sense, that without some restrictions
on the class of simulations to be considered, there can exist no universally satisfactory means
for detecting stationarity in a stochastic simulation. This negative result is probably expected
and suggests that any successful stationarity detection rule will need to take explicit advantage
of some additional structure of the system being simulated.

In the rest of the paper, we complement the above negative result with positive ones, that
are perhaps more surprising. In Section 3, we show that it is possible to generate a r.v Z
having the stationary distribution of a finite Markov chain {Xn}, using only simulated values
and randomization, and in Section 4 it is shown (using some recently developed ideas of [25])
that for certain classes of regenerative stocastic processes, we can identify a random time T
such that the system is in exact stationarity at this instant. These constructions are possible
even for certain systems in which the steady-state distribution is not analytically available and
must be simulated. The approach taken here to developing stationarity detection rules strongly
suggests that in the regenerative setting, one must take advantage of apriori knowledge of the
tail behavior of the regenerative cycle length random variable.

Section 5 discusses settings in which approximate stationarity can be achieved. In Section 6,
we provide further discussion, and Section 7 concludes the paper with some illustrative examples
and applications. Unless otherwise stated, all proofs are deferred to the Appendix.

2 Stationarity detection: definitions and basic theory

We shall restrict our formulation and discussion in this section to the Markov chain setting.
However, the ideas described here can, in fact, be easily extended to the general discrete-event
simulation context. One need only observe that if one views the typical discrete-event simulation
at transition epochs, one can make the process Markovian by adding supplementary variables
to the state description that include information on the time that remains before the 'clocks'
corresponding to each possible event will trigger a state transition of the system. It therefore
follows that a discrete-event system can be written as a functional of a discrete-time Markov
chain taking values in a complicated state space S in which both physical state and clock state
is recorded. For additional information on this way of looking at discrete-event simulations, see
[14].

Suppose that X = {X,} n=01.... is a Markov chain taking values in S. We can (without any
loss of generality) view X as being defined on the probability space

0 = (S X (0, 1)) x (S x (0,1)) x .

A typical element in Q than takes the form w = {(Xn,Un)}n=0 ,1,.... The sequence X can be
defined via the coordinate projections X,(w) = xn, and we further let U be the sequence of
random variables defined by U(w) = un.

Let K be a transition kernel defined on S, so that K(x, B) represents the probability that
thw chain X moves from x ip'o B C S in one step. For each initial distribution p on S. we can
then define a probability distribution IPp,K on Q via the formula

IPp,K [Xo E Ao,..., X. E A,, Uo E Bo,. .. , U, E Bn]

- A 0 (dxo) fA h (xo,dxi) ... fA K(x,,-I,dxn) . fB dyo ... f dyn.
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Hence, under the distribution IPtp,K, X is a Markov chain having initial distribution p and
transition kernel K. Also, U is a sequence of i.i.d. uniform (0, 1) r.v.'s that is itself independent
of X. We will need the uniform r.v.'s in order to define randomized algorithms for detecting
stationarity. Much of our subsequent discussion will involve such randomized detection rules.

We let M denote the subset of transition kernels on S such that for each K E M, there
exists a unique stationary distribution 7rK.

We say that T is a random time if T is a non-negative integer-valued r.v. defined on Q.
For n = 0,1,..., define the shift On by OnX = (X,,,Xn+l,...). Roughly speaking, our goal is
to construct a random time T such that the post-T process OTX is in steady state (is strictly
stationary).

Definition 2.1 Let K E M. The random time Tis said to be a stationarity detection time for
K if for each initial distribution p

IPpI,K(OTX E) IPrr,,K(X E.) (2.1)

One way to construct stationarity detection times is by means of randomized stopping
times [recall that a random time T is a randomized stopping time if for each n there exists a
deterministic 0 - 1 valued function fn such that I(T = n) = fn(Xo, U0,.. . , Xn, Un); sometimes
also the term non-anticipating is used for a randomized stopping time]. Such randomized
stopping times have the following nice property:

Proposition 2.1 Let K E M. If T is a randomized stopping time such that XT has distribution
IrA for each initial distribution p, then T is a stationarity detection time for K.

The proof of this follows immediately from the strong Markov property of X.
Ideally, one would like stationarity detection times to detect stationarity immediately if the

initial distribution is 7rK-. Our first result shows that no such stationarity detection time typically
exists.

Proposition 2.2 Let K E M and assume that 7r is not concentrated on any single point x E S.
Then there exists no stationarity detection time T for K such that

IPIrK,K(T = 0) = 1. (2.2)

Thus, the requirement (2.2) demands too much from the random time T. If we drop (2.2),
it turns out that stationarity detection times can often be constructed:

Example 2.1 Suppose that S is finite or countably infinite and that A' is irreducible. If X is
positive recurrent under K, there exists a unique stationary distribution WjK, and (by applying
inversion), we can find a deterministic function g such that g(U0) has distribution rK. Then

T = inf{n = 0,1... :Xn = g(U)}

is a randomized stopping time such that XT has distribution 7rK, and we may apply Proposition
2.1. 0

However, this construction obviously 'cheats' by constructing the function g (and hence the
stopping rule T) from explicit knowledge of 7rK. This suggests that a more appropriate formulation
for a stationarity detection time ought to somehow forbid the simulator from using explicit
knowledge of the stationary distribution to construct T.

We can accomplish this by requiring that T work uniformly well over a suitably large class
A' of transition kernels K. Being defined only in terms of the simulated data X and U, T can
not explicitly modify itself to reflect knowledge of the various stationary distributions.
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Definition 2.2 Let A' C M. We say that a random time T is a A/-uniform stationarity
detection time if T is a stationarity detection time for each K E K.

Perhaps surprisingly, it is often possible to construct such detection times:

Example 2.2 Suppose again that S is finite or countably infinite. Without loss of generality,
we can take S to be {0, 1,. ..}. Let M 1 be the class of irreducible positive recurrent transition
matrices K defined on S. For x E S, let

F(X,x) = liminf1 I(Xk < x).n-co n k=0

For a fixed but arbitrary K E M 1 , the strong law of large numbers for X implies that F(X,.)
is almost surely equal to the distribution function of 7r', and thus

T, = inf{n = 0, 1...: Xn = F-1(X, Uo)

coincides a.s. with the T of Example 2.1. Thus T is a stationarity detection time for the given
K and hence for all K E M 1 . []

Of course, here the difficulty is that T is constructed after observing the entire (infinite)
sample trajectory of X. Such a iandom time T can not be implemented in a practical setting.
This motivates restricting attention to stationarity detection times which are implementable in
the following sense:

Definition 2.3 A r.v. Z* is implementable, if there exists an a.s. finite randomized stopping
time 3 such that Z* is a deterministic function of /3, (XI, U1),..., (X,, U) alone.

We are now ready to state our main non-existence result for strong stationarity times. It
proves that well-behaved stationarity detection times T fail to exist even when one restricts
attention to Markov chains with countably infinite state space. In fact, let .M2 be the class of
aperiodic irreducible positive recurrent transition matrices K.

Theorem 2.1 Assume that S is countably infinite. Then there exists no implementable M 2 -
uniform stationarity time.

In fact, an even stronger result (Theorem 2.2 below) can be proved. Recall that the total
variation distance between probability measures ts and v on S is defined by

li1 - vii = 2 sup lp(B) - v(n)].
BCS

Definition 2.4 Let " C M.
(a) The family KV is said to be a weak uniformity class for the initial transient problem, if for
each E > 0, there exists an implementable r.v. Z*(E) such that

lIP pK(Z*() E .) - WK()II < (2.3)

for any initial distribution p on S and any K E K.
(b) The family A' is said to be a uniformity class if there exists an implementable r.v. Z" such
that IPp,-(Z* E ") = lrK(.) for any initial distribution p on .S and any K E K .
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We call the r.v.'s Z*(c) and Z* appearing in Definition 2.4 an c-stationary r.v. and stationary
r.v., respectively. If Z*(c) can be represented as XT(,) for some random time T ('), we call T(
an c-stationarity time.

Note that (a) demands only that the marginal distribution of Z'(C) be approximately
stationary. The extension from stationarity detection times to stationary random variables
is motivated by the fact that given a stationary detection r.v. Z', one can simulate a strictly
stationary version of the Markov chain by starting from X 0 = Z*, and given a C-stationary r.v.

Z*(c), the version -} of the Markov chain started from k0 = Z(c) satisfies

IIIPwK(X.) - 7K(')Il < C.

Theorem 2.2 Assume that S is countably infinite. Then M 2 is not a weak uniformity class.

This follows from the following result:

Proposition 2.3 Let S = {0,1,2 .. }, let KM = (ki0 )iES be a given transition matrix in

M, and let A/(K( ° )) be the set of transition matrices K = (kij)ijEs E M such that there exists

an integer A = A(K( °)) such that ki = k09) for i j < A. Then A(K(° )) is not a c-uniformity
class for 0 < c < 2.

These results suggest that the class A of transition kernels needs to be carefully chosen in
order that one have any chance of being able to construct a uniformly well behaved stationarity
detection rule. The remainder of this paper is concerned with describing the type of information
that needs to be present in A so as to permit such constructions.

3 Simulation of stationary finite Markov chains

Our main result on finite Markov processes is the following:

Theorem 3.1 The class M(-) of irreducible Markov chains with a fixed number s of states is a
uniformity class.

Thus, there exists algorithms generating a r.v. having the stationary distribution 7r of a finite
Markov chain using only simulated values and randomization. We proceed to describe one such
algorithm, thereby providing a proof of Theorem 3.1.

The first step is to translate the problem into a problem on continuous-time Markov process
{Y(t)}t>o by Poissonification. Indeed, it is a standard fact that if V1, V2 ,... are i.i.d. exponential
(say with unit rate), then the process {Y(t)} defined by

YWt = X0, 0 < t < V, YMt = X, V1 + .. + V,,_1 S t < 171 + ""+ V,,

is a s-state irreducible Markov process with the same stationary distribution as {X,}. Note
that {Y(t)} does not necessarily jump at V1 + ... + V, but only if X,+I # Xn . In terms of the
transition probabilities (kij)i,jEE for {X,,}, {Y(t)} has intensity Aij = kij for jumping from i to
j when i $ j.

The next step is to observe that the construction of a stationary detection r.v. for {Y(t)} is
easy when s = 2, e.g. E = {1,2} where

A21 A12
A 12 +- A21 AI2 "+ A21

Indeed, let T, be the first holding time of state i, i = 1,2. Then T1 , T2 are exponential with
intensities A12 , resp. A21 , and an easy calculation shows that

IP(T1 > T2 )= A21  1r. (3.4)
A12 + A21
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Thus, we have the following algorithm:

Algorithm A (GENERATING A STATIONARY DETECTION R.V. Z FOR A MARKOV CHAIN

{Xn} WITH Two STATES 1,2 )

1. Letj 1,t-O

2. Generate V, an exponential random variable with unit intensity, and X 1 starting from
X0= 1. Let j - X1, t - t + V

3. If j = 2, let T1  t;

else return to 2

4. Repeat steps 1, 2, 3 with states 1 and 2 interchanged to generate T2

5. If T1 > T2, let Z - 1;
else Z - 2

The last step is to treat the case s > 2 recursively and is the most intricate. We shall need to
introduce the F-valued process { y (F) (t)}1t> defined as the process {Y(t)} on F, where F C S

(see, e.g., [4] pp. 13-14). This means thatin the path of {Y(t)} we delete all segments where
Y(t) 0 F and glue together the remaining segments. Algorithmically, this can be implemented
as follows:

Algorithm B (GENERATING THE FIRST HOLDING TIME T(F)(i) AND THE NEXT STATE
y(F)(I) OF {Y(F)(t)} STARTING FROM y(F)( 0 ) = Xo = i E F)

1. Let j-i,t,-O

2. Generate V, an exponential random variable with unit intensity. If j E F, let t - t + V.

3. Generate X 1 starting from X3 = j. Let j --- X1.

4. If j $ i and j E F, let T(F)(i) 4- t, Y(F)(i) . j;

else return to 2

It is well known that the stationary distribution ,r(F) of {Y(f)(t)} is obtained by conditioning

7r= ,r(s) to F:
7!F) = 7r where rp =Z7rj. (3.5)t F jEF

Also, we have the principle of local balance: when {y(F+G)(t)} is stationarity, the rate of flow

of mass from F to G is the same as the flow of mass from G to F (here F, G are disjoint subsets

of S). In terms of the intensities *\F+ G ) for {Y(F+G)(t)}, this means that

Z (F+G) (F+G) - (F+G)A(F+G)"I SGi = j (3.6)

iEF jEG
A(F+G) ),F+G).

where G = ZjEGAij+ . We can rewrite (3.6) as

(F+G) (F) A(F+G) = (F+G) (G) (F+G) (3.7)
iEF jEG
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Now assume that we can generate exponential r.v.'s TFF+G), T F+G) having parameters

ieF FA G, resp. ZIEG 3r G)A(F+ . and stationarity detection r.v.'s Z(F), Z(G) having
distributions .(F), resp. r(G). Then as in (3.4),

ZiEF _r(F) A(F+G)
IP(TFF+G) > G  (F) (F+G) i -iG )(F+G)

EiEF~ I tG + EEG jF

1
1 + E j E G Ij jF [ i Fs

1 = r(F+G)
+-" (F+G) Ir (F+G)= r

G  lF

where we have used (3.7) for the third equality. That is, we can use the ordering of T(F+G)F

(F+G) ZFG () ZGTG to decide whether Z(F+G) should be in F or G, and next Z(F) or Z(G) to decide which
value in F, G is the appropriate. Thus

IP(Z(F+G) = i) IP(T ( F+ G) > T(F+G))Ip(Z(F) = i)= r(F+G)r(F) = 7(F+G)

for i E F as desired, and similarly IP(Z(F+G) =j) = 7(F+G) for j E G.

To construct Tp(F+G), note that the distribution of T(F+G) is that of the minimum of(F)'\(+G) I A(F+G)

exponential r.v's W with intensity (F (F for the ith state (i E F). IfG > 0, we
can sample a Poisson stream with intensity \(F+G) by repeatedly starting {Y(F+G)(t)} in state
i and accumulate the time until a transition to G occurs. We can then thin this stream by
generating a sequence of i.i.d. copies of Z(F), say 1(F) .F). The nth point is retained if

nF) = i, thereby obtaining a Poisson stream with intensity ( )( E+G) . The r.v. Wi is then
the first epoch of the thinned Poisson process. In practice, this construction requires a small
modification since AjFG) may be zero for some i. However, by irreducibility AF+G) > 0 for
at least one i E F, and this ensures that the following algorithm is valid (here t, indicates the
amount of time in which the ith Poisson stream has been simulated so far and si is a binary
variable indicating whether it is necessary to simulate any further):

Algorithm C (GENERATING Z(F+G) IF IT IS KNOWN How TO GENERATE Z(F), Z(G))

1. Number the states in F in some way, say F = {I0,...,1p- }

2. Let TF - oo, tj +- 0, si -- 0, i p ,..- 1

3. Let i,-p-1

4. If all sk = 1, go to 10;
else i - (i + 1) mod p

5. If si = 1, return to 4

6. Generate Y(F+G)(e), T(F+G)(e,) using Algorithm B and let j Y(F+G)(j),
t4-- ti + T(F+G)(I,).

If T > TF, let si = 1 and return to 4

7. If j E G, generate Z(F) and let k ,- Z(F);
else return to 4

8. If j $ k, return to 4;
else if t, < T(F), let TF . t,

7



9. Return to 4

10. Repeat steps 1,...,9 with F and G interchanged to generate TG

11. If TF > TG, generate Z(F) and let Z(F+G) , z(F)

else generate Z (G ) and let Z(F+G) , Z(G)

To generate Z = V ), one can then start by noting that obviously Z ( F } = i if F = {i} is
a one-point set. Using Algorithm C, one can then generate Z(F) for all two-point sets; then
Z(F) for all three- or four point sets and so on. Algorithmically, this is particular convenient in
programming languages (e.g. Pascal) allowing recursive procedure calls.

In Section 6, we give some estimates indicating how the number of steps needed to generate
Z may depend on the number s of states.

4 Simulation of stationary regenerative processes

Let S be a state space endowed with a metric under which S is separable (e.g. IPd). If X =

{X(t)}t>0 is a right-continuous stochastic process taking values in S, we say that X is a (non-
delayed) wide-sense regenerative process if there exist random times 0 = T(O) < T(1) < ... such
that

i) X(T(n) +) _ X(.) for n > 1;

ii) T(n) is independent of X(T(n) + -) for n > 1.

We note that we are not requiring the process evolution prior to time T(n) to be independent
of that subsequent to T(n). Instead, the post-T(n) process X(T(n) + .) = {X(T(n) + ")}t>0 is
required only to be independent of the time T(n) itself. This extension of classical regeneration
(known as wide-sense regeneration) turns out to be useful in the study of Harris recurrent
Markov chains; see pp. 150-158 of [4]. [We note that a discrete time sequence {Xn}n=0J ... can
be analyzed by studying the associated continuous time process {X(t)}t>o, where X(t) = XtJ
and LtJ denotes the greatest integer less than or equal to T.]

We say that X* = {X*(t)}t>0 is a stationary version of X if X* is a strictly stationary
process possessing an associated random time T*(O) such that

i) X'(T(O)+ -) 2_ X(.)

ii) T*(0) is independent of X*(T(0) + .).

In the remainder of this section, we will describe two settings in which X* can be simulated,
given the ability to simulate X.

Let rn, = T(n) - T(n - 1) for n > 1, write r = r, for the generic cycle and set m = lEt. The
following description of the stationary version X* is given in [25]:

Proposition 4.1 Assume m < oo. Suppose that X' = {X'(t)} is an S-valued stochastic

process with associated random time T'(0) satisfying

IP(T'(0) E dx) = xmIP(r E dx) (4.8)
m

and
IP(X' E .IT'(O) = x) = IP(X E "17 = x) (4.9)

for each x > 0. If U is a uniformly distributed r.v. on [0, 1] and independent of X', then X* is
a stationary version of X where

X-(t) = X'(UT'(0) + t), t > 0.

8



There is an intuitive explanation for why this construction should give a stationary version.
Imagine that the process X has been running for a time interval of length t and that we pick
a point 77 uniformly in the interval [O,t]. Then, the post-7 process X(y + -) converges to a
stationary version X* of X when t -- oo. The possibility of the point r7 ending up in a given
cycle interval of length x should be proportional to x and the relative number of such intervals
is IP(T E dx), which (together with the 'normalisation' f xIP(r E dx) = m) gives us (4.8). Given
the length of the picked cycle, it should behave as an ordinary cycle, i.e. (4.9) should hold.
Finally, the picked point should lie uniformly within its 'length-biased' interval, independently
of everything else.

Suppose that r has a density. In that case, (4.8) states that the ratio of the density of T'(O)
to that of T is x/m. Hence, if the r.v. T is a.s. bounded above by the deterministic finite constant
a, say, the ratio will be bounded above by a/m. It is well known (see, for example, [19]) that
the boundedness of the ratio permits one to generate the r.v. T'(0) via acceptance-rejection
(given an algorithm to generate ordinary regenerative cycle lengths with the distribution of r).
A similar analysis is valid without assuming the existence of denities, in particular when r is a
discrete r.v.

Combining this acceptance-rejection idea and Proposition 3.1 leads to the following algorithm
for generating the stationary version X* corresponding to X:

Algorithm D (GENERATING A STATIONARY VERSION X* WHEN THE CYCLE LENGTHS ARE

BOUNDED, T < a < co a.s.)

1 n*-1

2 Generate X over [T(n - 1),T(n))

3 Generate Vn, a uniform r.v. on [0, 1]

4 If aV,, < 7,,, go to 5;
else n - n + 1 and return to 2

5 Generate U, a uniform r.v. on [0, 1], and let

X*(t) = X(T(n- 1)+Urn+t), t >0.

We note that T*(O) = (1 - U)rn and that the probability of acceptance at step 4 of the above
algorithm is m/a; the expected number of times that the test at step 4 is executed is therefore
a/rn.

Algorithm A implies that the class of wide-sense regenerative processes with cycle lengths
bounded above by a fixed constant form a uniformity class. Because of the intimate relation
between regenerative processes and recurrent Markov chains, it is also clear how to translate
this into a result about Markov chains.

Unfortunatel. it is only rarely the case that the cycle lengths of a regenerative process are
bounded (but see Example 7.2 for an interesting exception). However, [25] provides us with
the tools necessary to develop a second interesting class of wide-sense regenerative processes for
which generation of the stationary version X* is possible.

Proposition 4.2 Assume m < oo. Then X* is a stationary version of X if therc exists an
associated random time 13 such that

IP(W E dx) = -IP(r > x) (4.10)
m

and
IP(X' E .1,3 = t) = IP(X(t + -) E Blri > t) (4.11)

for each x, t > 0.
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We note that (4.10) states that 0 has the stationary age distribution (or the stationary
excess life distribution) for the wide-sense regenerative process X; see p. 116 of [4]. Thus, (4.11)
basically asserts that the stationary version X* can be obtained by conditioning the original
process X in such a way that the cycle currently in progress has the appropriate stationary age
distribution.

The key to applying Proposition 3.2 to simulate X* is the ability to generate the r.v. 0 from
the distribution specified by (4.10). We say that the stationary age distribution is simulatable if
such variate generation iL possible. Proposition 3.2 immediately establishes the validity of the
following algorithm:

Algorithm E (GENERATING A STATIONARY VERSION X' WHEN THE STATIONARY AGE

DISTRIBUTION IS SIMULATABLE)

1 Generate a r.v. 0 with distribution (4.10)

2 n-i

3 Generate X over [T(n - 1), T(n))

4 If r, > 0, go to 4;
else n - n + 1 and return to 2

5 Let
X*(t) = X(T(n- 1)+,3+t), t >0.

We note that T*(0) = -,n - ). If /3 = x, the probability of acceptance in step 4 given / = x
is IP(r > x), so that the expected number of times N the test at step 4 is performed is

1 0 1 P( E x) 0 1 -1 IP( )d = 0 x=o
IP(r > X) 1 dx) ]J > x) m 1 m

(unless the support of r is bounded, say a is the supremum; then we get a/m precisely as in
Algorithm D). Thus typically Algorithm E has an infinite expected sample size. This indicates
that applications that require repeated use of Algorithm E (see, for example, Section 6) will
in practice have enormous sample sizes, whereas the problem is less serious if the algorithm is
only used once, for example when starting a long simulation run is a strictly stationary way to
liminate bias. [It is tempting to circumvent the problem by generating / in step 3 instead, but

this idea does not lead to the correct distribution of X'.]
It may be noted that the r.v. N does not represent an extreme instance of a r.v. with a heavy-

tailed distribution. Suppose for example that r has a geometric distribution (see Examples 7.4,
7.5 below) or, more generally, that IP(r > x) < e -ax for some a > 0. By Jensen's inequality,

IE[NPPI = x] < IEP[NI/3 = x] = (IP(r > x) - P

for p < 1 and hence

IEN =j E[N/ 3 = x]IP(/ E dx) < j(IP(T > x)'-Pdx < 1 j e-('-p)-dx < cc.

Also, one may note that once / = x has been picked in step 1, the conditional expected sample
size 1/IP(r > x) is finite.

One might initially expect that the only case when the stationary age distribution is simulatable
is that where the stationary distribution of X is known in closed form, in which case one can
simulate the stationary version X* from this distribution explicitly. This, however, is not the
case; see Examples 7.3 and 7.4 for non-trivial applications of Algorithm E.
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Algorithm B implies that the class of wide-sense regenerative processes with a given simulatable
stationary age distribution is a uniformity class.

It turns out that Algorithms D and E can, in fact, be extended beyond the setting of wide-
sense regenerative processes. Variants of these algorithms can be developed for synchronous
processes; see [26] for details. A synchronous process is one in which the 'cycles' form a stationary
sequence, but where the dependency structure between cycles can essentially be arbitrary. These
processes arise naturally as Palm versions of stationary point processes; see [22]. Because it is
not clear to the authors how this would show up in a simulation context, we don't discuss this
further here.

5 Weak uniformity classes

We start by showing that for a certain class of Markov chains, one can calculate a priori
estimates on the rate at which the system converges to steady-state, and thereby construct -

stationarity detection times which are deterministic. In the finite state space setting, estimating
the convergence rate essentially amounts to calculating a bound on the eigenvalue of K having
the second largest modulus, since this is the parameter that determines the rate at which the
nth power of an irreducible transition matrix converges to its limit. In any case, given an upper
bound on the rate at which the system converges to steady-state, we can choose a time T
so that the total variation distance to the steady-state distribution is arbitrarily small. The
deterministic time T can then be used in (2.3) to obtain an appropriate uniform bound on the
total variation distance.

We say that a transition kernel K satisfies a (A, W, m) minorization if

K m (x,.) _> A(.), x E S. (5.1)

Here 0 < A < 1, W is a probability distribution on S and m > 1 an integer (K m (x,B) denotes
the probability that the chain X moves from x to B in m transitions). Some discussion of
condition (5.1) is given in Remark 4.1 below.

The following result is well-known and straightforward to show via coupling (see, e.g. [20]):

Proposition 5.1 If K satisfies a (A, Wp, m) minorization, then K E M and

sup IIKn(x,.) - 7rK(')Il 
< (1 - A)Ln/mJ. (5.2)

xES

It follows that by choosing n sufficiently large, we can make (1 - A)V/mJ arbitrarily small. This
immediately proves that one can construct deterministic c-stationarity detection times for the
above class of systems.

Theorem 5.1 Fix A > 0 and m > 1, and let M 3 be the family of transition kernels defined on
S such that K satisfies a (A, p,m) minorization for some W. Then M 3 is a weak uniformity
class, and T(c) is an c-stationarity detection time when T(c) is chosen as the least integer n
having the property (1 - A)tn/mJ < C.

We will see later (Example 7.3) that M 3 is, in fact, a uniformity class. In order to achieve strict
stationarity (rather than -stationarity), we will use randomized stopping times (rather than
the deterministic times of this section).

Remark 5.1 Condition (5.1) is closely related to the Doeblin condition studied, for example,
in Chapter 5 of [10] (in fact, it is easy to show that condition Do stated on p. 221 of [10]
implies (5.1)). In the discrete state space setting, (5.1) is equivalent to requiring that the m-
step transition matrix has a column in which the elements are uniformly bounded away from
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zero (in the case of a finite S, (5.1) holds for some (Ap,m) if and only the Markov chain is
aperiodic and irreducible). Typically, we would expect (5.1) to hold when S is compact and
K(x, A) satisfies some continuity requirements [in fact, in (5.1) we may preliminarily for a fixed
x take m = m(x) where there is positive probability of coupling to the stationary version in
m steps starting from x, cf. Lemma 2.2 of [5]; by continuity, the same m will then serve in a
neighbourhood of x, and by compactness, a finite m will do for all x].

It turns out, in fact, that the class of chains for which deterministic detection times work
uniformly well over all possible initial distributions v is precisely described by the set of kernels
K satisfying (5.1). This follows by the following partial converse to Theorem 4.1: suppose that
for 0 < C < 1/2 there exists a deterministic time T(e) = n such that IIPK(X, E -) - 7rA-(.)Il <C

for each x E S. Then, there exists (A, V, m) such that K satisfies a (A, V, m) minorization. (The
proof is easy and therefore omitted). 0

One difficulty with applying Algorithm D of Section 3 is that it requires that the cycle
lengths be bounded. Very few regenerative processes have this property, although the class of
(s, S) inventory systems is an notable exception (see Example 7.2 for further details). It is worth
noting that, in general, boundedness of the regeneration times does not imply the existence of
a deterministic stationarity detection time T; see [15] for a discussion of the class of chains for
which such deterministic times exist.

On the other hand, one might hope that the application of an appropriately derived truncation
technique to the cycle length distribution would enable one to use Algorithm AE to construct f-
stationarity detection times. The development of such a methodology is given in the Appendix,
where we show the validity of the following algorithm:

Algorithm F (GENERATING AN C-STATIONARITY DETECTION TiME T(c) WHEN AN UPPER

BOUND "/ ON lE7 p+ I IS KNOWN)

1 Calculate a = a(c) = (4-// 2) 1/ p

2 n- I

3 Generate X over [T(n - 1),T(n))

4 If 7 K a, go to 5;
else, n ,- n + 1 and return to 3

5 Generate Vn, a uniform r.v. on [0, 1]

6 If aVn < 7, go to 7;
else, n - n + 1 and return to 3

7 Generate U, a uniform r.v. on [0, 1], and let T(E) = T(n - 1) + Ur,,

Thus, the class of regenerative processes with IErP+ 1 < c is a weak uniformity class

6 Further discussion

An underlying theme of Sections 2 through 5 is that the tail of the distribution of the cycle
length 7 plays a critical role in whether one can construct c-stationarity times. In particular,
we have positive results for:

i) finite-state Markov chains (stationarity detection r.v.'s are constructed in Algorithms A,
B, C)

12



ii) wide-sense regenerative processes with bounded cycle lengths (Algorithm D constructs
stationarity detection times)

iii) wide-sense regenerative processes with simulatable stationary age distribution (Algorithm
E constructs stationarity detection times)

iv) wide-sense regenerative processes with bounded (p + 1)th moment of the cycle length
(Algorithm F constructs E-stationarity detection times)

On the other hand, our principal negative result (Theorem 2.2) arises in a setting in which no
control whatsoever is placed on the behavior of the cycle length distribution.

The critical role of the tail behaviour of the cycle length distribution in developing initial
transient detection algorithms comes perhaps as no surprise, given the intimate relationship
between this tail behavior and rates of convergence for regenerative processes (see, for example,
[241).

One obvious question that is of interest to the simulator is whether the ability to generate
a stationary version of the process can be used to obtain a variance reduction in the context of
steady-state simulation. In particular, suppose that X = {X(t)}t>0 is a real-valued regenerative

process in the classical sense (with i.i.d. cycles) for which IE fYJ2 + r2] < cc, where k'i

f T (i
1
) IX(s)Ids; to avoid trivial cases, assume that X is not constant (X(t) =_ a). Letting

a, (t) denote the time average (sample mean) t - ' ff X(s)ds, it is well known that
a.) . a = IEX*(O) = 1IEYI = 1E )ds.

m m JotSS

The conventional approach for estimating the steady-state mean a is to use ai(t) as point
estimator, and under the conditions stated,

Vi(al(t) - a) D al N(0, 1), t - cc, (6.3)

where or2 = EI, 2 /m.
However, the ability to simulate a stationary version of the regenerative process suggests

the following alternative estimator a2(t). Assume that the cycle lengths are bounded and that
algorithm D is used to find a stationarity detection time Ti(0); then IEX(T(O)) = IEX"(O) = a.
Let A1 = X(TI(0)), proceed to the next cycle and execute Algorithm D a second time to produce
a second independent copy A 2 of A,. Going on in this way, the simulation of X over [0, t] will
produce a random number X(t) of i.i.d. copies An,A 2 .... , Ax(t) of XT, (0), and we can therefore
let

a2(t) = tj Ai x(t) I_

0 X(t) 0

Under our moment assumptions, it follows that (see [16]) a 2 (t) a and

Vt(a 2 (t) - a) -D C2 N(0, 1), t -- oc, (6.4)

where a2 = VarXT,(o) •IET#, and r# is the amount of time for which X needs to be simulated
in order that a copy of XT,(o) be calculated (r# is the sum of the cycle lengths up to the first
accepted cycle; the notation indicates that r # may be thought of as a regeneration point, cf.
the proof of Proposition 6.2 below). The following result is shown in the Appendix:

Proposition 6.1 For any regenerative process satisfying the conditions of Algorithm D, one
has a2 > a 2
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Thus, one never obtains an efficiency improvement by favoring 02(t) over o(t). This may not
appear surprising, as a 2 (t) trhrows away a great deal of information that is incorporated in
oi(t). Nevertheless, a more sophisticated idea will indeed produce variance reduction:

Proposition 6.2 Under the assumptions of Algorithm D, there exists a constant b (depending
on X) such that the estimator a 3 (t) = (1 - b)al(t) + ba 2 (t) satisfies

Vt(a3(t) - a) I a3 N(0, 1), t - co, (6.5)

with a2 < a21. Furthermore, b can be consistently estimated. I.e., there exists b*(t) such that
b'(t) can be evaluated from the simulation in [0, t] and b-(t) '"'" b, t - oc, and then (6.5) holds
with a3(t) replaced by (1 - b*(t))aj(t) + b*(t)a 2 (t).

The evaluation of b and the construction of b*(t) is given in the proof (based upon a slightly
tricky application of linear control variates) in the Appendix. It will also be seen that unless one
has a process with a very special dependence structure, the strict inequality or3 < a holds. The
construction is, however, somewhat complicated and also it is the feeling of the authors that the
variance reduction which can be obtained in this way will seldom be very substantial. Further,
even though the control variate idea carries over to Algorithm E when simulating a fixed number
of cycles of generic length r# , the corresponding estimator can never compete with al(t) when
we discuss efficiency in terms of the simulation run length t, because IE7# = 00.

As a consequence, we do not believe that the main simulation contribution of this paper
lies in the area of variance reduction. Rather, the focus is on the initial transient problem.
The idea is to produce estimators with lower bias, without adversely affecting the asymptotic
variance or the length of the simulation. Our results contribute to this by giving insight into
how to construct a random time T(e) such that the post-T(E) process is close to stationarity.
The estimator 10',4 (t) = ! (TE + s)ds

will typically have better bias characteristics than al(t), without affecting the asymptotic

variance (since vr(a4 (t) - a) D a, N(O, 1) as t - oo) or the order of magnitude of the length of

the simulation for large t.

A second important possibility that the results of this paper create is the ability to use
simulation to numerically calculate upper bounds on the rate of convergence of a stochastic
system to its steady-state. Such upper bounds are currently of great interest to the probability
community; see, for example, [3]. As stated earlier, in the finite state Markov chain setting
this is tantamount to using simulation to numerically calculate an upper bound on the second
eigenvalue A of the transition matrix of the chain. In this case, A may often be available by other
means, but for even slightly more complicated processes the difficulties are formidable (e.g. for
queues this convergence rate is related to the concept of relaxation time, see [4] Ch. 111.10 for
an example). What we can do is to use the method of coupling (see, e.g., [4], Ch. VI.2, for
some basic discussion and [20] for a more comprehensive treatment) to numerically calculate
the rate of convergence. The idea is to simultaneously simulate both a stationary version X*
and the non-stationary version X of the process (the techniques of this paper would be used
to generate X*), in such a way that the coupling time is finite; by the coupling time we mean
a random time n with the property that X(t) = X*(t), t > K. For a positive recurrent Markov
chain wilh a finite or countably infinite state space S we may start by simulating X* and X
independently, take r to be the first n such that X, = X and let the processes be identical
after r, whereas for non-Markovian processes or processes with a continuous component of the
state space slightly more intricate procedures may be needed (see, e.g., Example 6.1 below).
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In any case, the tail of the distribution of K gives an estimate of an upper bound on the total
variation distance between the distributions of the stationary and non-stationary versions,

IIIP(X(t) E ") - IP(X*(t) E ")ij S 21P(r, > t), (6.6)

and by simulating i.i.d replications ,., -N of K, we can calculate empirical bounds on
IP(K > t).

The ability to generate a stationary version of the process can have additional benefits, as
well. For example, one can estimate quantiles of the stationary distribution by generating i.i.d.
samples of the process in stationarity (in much the same way as o 2 (t), is constructed). The
generation of confidence intervals for quantiles in the i.i.d. setting is less complicated and more
straightforward than that in the dependent context, although it is likely that the asymptotic
variance of this new estimator is worse than that of the traditional one. More generally,
traditional steady-state estimators like a, (t) only capture features of the one-dimensional distribu-
tion, which does not always tell the whole story; see the discussion in [29].

7 Examples

Example 7.1 We shall give some estimates indicating how the run length of the recursive
Algorithm C may depend on the number s of states of the Markov chain {X,}. A difficulty
is that this run length in general appears to depend on the transition probabilities kij in a
complicated way, and that it thus may be difficult to make comparisons for different values of s.
We shall here consider an extremely simple example, a chain that goes to any other state with
equal probabilities (thus kij = 1/(s - 1) for i $ j, kii = 0). By the 'run length' f we understand
the expected number of steps of {X,} that need to be generated before Z = Z(s) is observed.

Consider first the version of the algorithm where one state at a time is added. That is, in
Algorithm C, F is a one-point set. Let nt denote the run length needed to create Z(A) when A
has t elements. Due to the special structure of the kij, nt does not depend on A, and obviously
nj = 0, n, = 1s. Now let G have t elements and F one, say i. To create T(G) , Algorithm C goes
through the states in G in succesion, creates one step of {X,} at a time and observes whether
the next value is i. The expected amount of time required for this to turn out succesfully is
s - 1. Then Z(G) is generated, and the algorithm stops strictly later than at the time when the
observed value of Z(G) is the state from which a transition to i occured. The probability of this
last event is 1/(t - 1), and thus nt+l > (s - 1 + nt)(t - 1), from which it follows that n 2 > s - 1,
n 3 >_ n2 , n4 >_ 2n 3 , n5 > 3n 2 , and thus

I.,=n.,> (s-1) .(7.7)

Now assume instead that the recursive step is carried out by letting F and G be of the same
order of magnitude. For convenience, let s = 2 N and let mk denote the run length needed to
create Z(A) when A hab 2k elements. Assume that F and G has both 2k elements. An upper
bound on the run length needed to create T(G) is 2k (the number of states in G) multiplied by
the expected number of steps needed to create an event in the Poisson stream with intensity
z(G) A(F+G)

"')F . Arguing similarly as above, this number is

2- 1
( 2- - - + mn,)2 .

Thus

mk+l < 2 " 2 k( 2 k +mk) 2 k +mk,

15



where the last mk comes from step 11 of Algorithm C. Letting mZ = max fmk,(2 N -- 1)/2 k

it follows that m, _< 2 N+2, mZ+ 1 < 2
2k+Sm, and thus

N = m N  m* <_ 2 N(N+I)+3Nm* < 2X?+5N+2 .

Substituting s = 2 N, this upper bound is

4s2elog(s'os s/(og 2)
2 ) = 4S5S2.08ogs

so that 'doubling up' of states leads to

f = 0 (s2.09 1°gs) (7.8)

which is clearly much better than the lower bound (7.7) obtained by adding one state at a time.
For processes with a special structure for the transition graph, these estimates can be

improved somewhat. Assume, for example, that S = {1,...,s = 2 N} and that it is known
that {X} has birth-death structure. That is, ki, is only non-zero for j = i - 1 or j = i + 1
when i= 2,..., s- 1, when i= 0only forj = 0orj = 1, and when i= sonly forj = sor
j = s - 1. Proceeding again by 'doubling up' the number of states, this leads to Algorithm C
being applied for F, G neighbouring intervals of length 2 k (k = 1,..., N - 1). However, when
generating TG, we need not search all states of G to watch for a transition to F, but only the
state neighbouring to F. If all non-zero entries of K are 1/2, irK is uniform on S, and we can
argue as above to get

mk+1 = 2(2 + mk)2k + ink.

Asymptotically, this is easily seen to lead to f, = O(slo°510gs). The exact values for small N are
given in the following table:

N 1 2 3 4 5 6 7 8 9 10
s 1 2 4 8 16 32 64 128 256 512 1024

m,1 4 28 268 4588 151.468 9.845.548=9.8.106 1.3-10 3.310 1.710 1.7.10"

A further possibility for reducing the run length is that 7r(Si) may be known for some
partitioning of S, S = S + .'. + Sq, so that we can first select one of the Si with the known
probabilities and next generate only Z(s-) . An example would be random environment models
with Si the event that the environment is in state i, which would typically have a known steady-
state probability. 0

Example 7.2 This example serves two purposes, the first to provide a non-artificial example of
a regenerative process with bounded cycle length and the second to illustrate the use of coupling
to estimate the rate of convergence to the steady-state. We considered a (s, S) inventory system
with s = 0, S = 1 and a demand process which is a superposition of a deterministic unit rate and
a compound Poisson process with arrival rate 3 and jumps which are uniformly distributed on
(0, 1/2). Thus, X drifts downwards at a unit rate between jumps and is instantaneously reset to
1 whenever (-oo,0] is hit, which may occur either continuously at zero (no jump) or through a
jump of size exceeding the present level X(t) of stock. Note that if no arrivals occur in [u, u + z),
we have X(v-) = X(u) - z (mod 1). The cycle length r may be taken as the time spent
between consecutive visits to state 1. The process is Markovian but simple explicit formulas
for the stationary distribution enabling X*(0) (and thereby X*) to be simulated by standard
methods are not available. However, since r < 1 we are in a position to apply Algorithm D.
For example, a coupling time between a stationary version X* and a version X with arbitrary
initial conditions can be constructed as follows:

Algorithm G (GENERATING A COUPLING TIME K OF A (s,S) INVENTORY SYSTEM)
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1 Generate the length 13 = T'(O) of the first cycle {X*(t)1o<T.(o) of X" by Algorithm A;
Y-1.

2 Generate X over the time interval [O,T*(O)] by independent simulation;
Y - X(T*(O)), t - T'(0).

3 Generate Z, an exponential r.v. with rate /3;
t-t+Z,Y.-Y--Z (mod 1),Y -'-Z (mod 1)

4 IfY < Y', let a- Y- 1, b -Y;

else a- Y - , b4-Y"

5 Generate V, V', independent r.v.'s on (0, 1);
- Y - V, Y, - -V

6 If a < Y <band a < Y <b, then K -t;

else return to 3

Figure 1

We took 3 = 1 and /3 = 2, and repeated the experiment 500 times for each value of /3
Figure 1 gves the empirical values Z I(K5 > t)/500 of the survival probabilities IP(i > t)

giving an ipper bound on the rate of convergence to stationarity, cf. (6.6), and shows the
expected tendency of slower coupling (lower rate of convergence to stationarity) when /3 = 1.
A simple measure of this tendency is also the observed empirical means of K which were 5.34
and 1.49, respectively. Roughly, we may also conclude that the process has become for all
practical purposes stationary at time t = 10 when 3 = 1, whereas the corresponding t-value
is probably much higher when /3 = 2. Note, however, that coupling methods typically produce
only upper bounds and that the interpretation of estimates relating to the coupling epoch K for
this and other reasons seem to require some care (in our opinion, not least when the mean IEK
is studied!), no matter whether such results are obtained from theory as say in [21, [31 and [I] or
from simulation experiments like here. Our point here is, however, not to discuss these issues,
only to point out that in fact in some cases simulation presents a feasible approach. 0

Example 7.3 For a simple yet non-trivial case where one can actually simulate a r.v. having the
stationary age distribution, cf. Algorithm E, consider the M/G/1 queue. If the queue discipline
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is FIFO (First In First Out), enough is known about the steady-state distribution to allow a
stationary version of the system to be simulated. For example, if the service time is phase-type
([21]), then so is the steady-state waiting time V ([21]) and hence straightforward to generate as
initial value for the simulation. In general, we may use the Pollaczek-Khintchine formula V
R, + • .. + RN, where N is geometric with rate p (the traffic intensity) and R 1, R 2 .... are i.i.d.
with common density (1 - B(x))/p, where B is the service time distribution and p its mean;
typically, this density will be simulatable given a specific form of B.

Of course, in the FIFO case the need to simulate at all is questionable. However, if instead we
are dealing with some other work-conserving discipline like some variant of processor-sharing
or priority queueing it will only rarely be the case that full information on the steady-state
distribution is available. What one could do is then to note that by work-conservation, the
cycle length 7 has the same distribution as for the FIFO case. To generate a r.v. 3 having
the stationary age distribution as required in step 2 of Algorithm B, one thus simply starts a
stationary FIFO system and let 0 be its first stationary cycle length, noting that the stationary
distributions of the age and the excess life of the cycle are the same. 0

Example 7.4 Our purpose is here to present a further non-trivial case where one can actually
simulate a r.v. having the stationary age distribution, cf. Algorithm E. We take {XI} as a
discrete time Harris recurrent Markov process, say with state space S and n-step transition
probabilities Kn(x, A) = IP(Xn E AIXo = x) on which we impose the minorization (5.1).

The splitting argument for Harris chains (see [4] for the theoretical background and (13]
for the simulation implementation) now states that following each n = O.m,2m..... we may
let a regeneration occur at time n + m w.p. A. In this way we obtain the distribution of the
zero-delayed cycle length r as geometric on a lattice, IP(r = im) = c(1 - c)- 1 , i = 1,2.
From this it follows that the stationary age distribution is given by

E(1 - )-
IP(T(O)=im+j)- , i=1,2,.... j=0,1 . ,m -1,

which is of a form allowing for straightforward computer generation. Note that when m > 1,
this is a wide-sense regenerative process that does not (in general) have i.i.d. cycles (they exhibit
dependence). 0

Example 7.5 Consider the M/G/s/N loss system, that is, a s-server system with Poisson
arrivals at rate a, service time distribution B and allowing at most N customers present in the
system at any time; new customers arriving when N are present are lost. The queue discipline is
work-conserving but otherwise arbitrary. This model will serve in part as a concrete illustration
of the idea of Algorithm E, and in part to illustrate the phenomenon of continuous time but
lattice cycle length distribution.

We shall need to impose a mild condition on the tail of B, namely

B(x + yo)> 6  >10, (7.9)
B(x) -

for some 6 > 0. Xo,yo < oc. For example (7.9) holds ifliminfb(x) > 0 where b(x) is the failure
rate of B at x. With m = x0 + Yo, it immediate follows that the probability B(x + m)/B(x)
of service termination before z given x units of service has been attained is bounded below by
6 for all x > 0. Hence, no matter the initial state of the system, there is a probability of at
least c = e-"6'N that the system will be empty at time m. The following algorithm describes
how to generate a regenerative cycle, with the cycle length distribution being geometric on the
lattice {m,2m,...}, IP(X = im) = (1 -)i-1, i = 1,2....:
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Algorithm H (GENERATING A REGENERATIVE GEOMETRIC CYCLE OF A M/G/s/N Loss

SYSTEM)

1 t ,- 0, system state -- idle

2 Generate the system over the interval [t, t + m]

3 If system state = idle, return to 2;
else, go to 4

4 Generate a 0-1 random variable U with IP(U = 1) = c. If U = 1, go to 6;
else, if U = 0, go to 5

5 Generate a further 0-1 random variable V with IP(V = 1) = c. If V = 1, reject the sample
path generated in the last step of 2 and return to 2;
else, if V = 0, then t -- t + m and return to 2.

6 r7-t+m

To simulate the first stationary cycle of the system, one constructs 0 in step 1 of Algorithm
E by simulating 30, W where IP(Oo = im) = c(1 - c),, i = 1,2,..., and IV is uniform on (0, m),
and putting f = 30 - W. The rest then follows Algorithm E, using Algorithm H to simulate
the cycles of the zero-delayed process. C

8 Appendix: proofs

Proof of Proposition 2.2 Because w" is not a unit point mass distribution, there exists a probability
distribution v i 7r such that 7r and v are equivalent (i.e., share the same sets of probability
zero). Hence IPL,,K(T = 0) = 1 so that IPv,K(XT E .) = v(.). Since v $ 7r, this implies that T
is not a stationarity detection time for K, yielding a contradiction. 0

Proof of Proposition 2.3 Assume that Z is a c-stationarity detection rule in the class Af(K (0 ) )

associated with the randomized stopping time or, and choose 6 > 0 such that 2(1 - 6) > C. Let
A be some large integer to be specified later, and define K ( ' ) E Af(K (° ) ) by

0) i < A
a) a+ 1 - c,)k ' )  i> a, i=3j

I (1-a)k!?) i>A, i j

0 < a < 1. For 0 < a < 1, write r(') = 7rK(.) and VO0 IP0,K(.) for the IPK(o)-
distribution of {X,} starting from X0 = 0, and let 7 = inf{n > 1: = 0}. Then, letting
M = max{X,: 0< n < a}, it is easy to see that

IE()ir > __1 IP()(M> A), (8.10)
1-

hi-() _ IEal E(O)  I(X,, = i) = (rE ° )  I(X, ) i < A. (8.11)

n=0 n=O

In particular, (8.10) converges to oc and (8.11) to 0 as a T 1, and hence for some a we have
ir()({0,...,A}) < 6/2. Choose A such that IP(°)(Z < A,M < A) >_ 1 - 6/2. Since IP(')(Z <
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A,M Al A) - WP( 0)(Z < A, M < A) by construction, we get

II1P@c)(Z E *)- r(-)(.)II > I~@~ I KO)( A) - 7r@a)({0, . .. , A)

" jIP(-)(Z < A, M < A) - 7r~({O( 0..,A

2 2

a contradiction. E

Proof that Algorithm F is valid Suppose that the cycle length r is not hounded by the constant
a, and consider the r.v. T,,(O) having distribution

lP(T, (O) E dx) - .xI(O < x< <a)IP(T E dx)
IE7;0< r <a]

We note that the r.v. T,,(O) can be generated by looking at the subsequence of the r1 s for which
17, < a and then applying to the subsequence the 'length biased' acceptance-rejection technique
of Algorithm A (see step 4). If (4.9) is in force, then (for any measurable set B)

lIP(X'(UT.'(O) +) E B) - IP(X' E B)j

SI1P(X'(UT,(O) +) E B) - IP(X'(UTT'(O) E B

I ]o0IP [X(Ut + .)E B171 = t]I(1P(T,,(O) E dt) - LP(T'(0) E dt))

J I1P(T,,(0) E dt) - IP(T'(0) E dt)I

-PT jaxi)lP+d)xcc P(-Edx)

= -IE[r;O<T7:5a)] IE[-; r> a]

m m
_21E[r;,r> a]

lEr

We further note that if lEr > 1, then

IE[r; T > a] (8.12)
lE7-

*E7/ - '/ 2 1(7 > a)]
lE-r

* - 2  1Er r ](Cauchy - Schwarz)

*1r EIE"2 [;7-> a] (since IEr >1
lE7

-IE'/
2 [r;,r > a],

whereas (8.12) is bounded by IE[,r;T7 > a] if lEr < 1. But

IE[r; r > a] !K E[(r/a)p7;r7 > a] < a-lErP+1 .

So, suppose that an upper bound -y on ETrP+l can be computed. Then, for any positive < 1,
we can choose a = a(c) as in step I of Algorithm F. By doing so. this guarantees that

2 sup F(X'(UTa'(0) + -) E B) - IP(X- E B)J < E
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Proof of Proposition 6.1 Obviously, T# is the sum of the cycle lenghts up to and including the
first accepted cycle, and since a/rn is the acceptance probability, it follows by Wald's "ientity
that IE,-# = lE-r - a/rn = a. Also, it is standard (or seen by a simple conditioning argument
based upon Proposition 3.1) that

VarX(O) = VarXT(O) = 'E [1F'rx -XS a)2ds]

Thus,

21 = IZI= 1I [f's1 2  2yi~ -aus.
Or IEZ1  1 Xs - aos, 1 = VarX*(O).l E7# -XS 0)2 f T 2

Howvever, let t be fixed and let U be uniform on [0, t]. Then

IE f(X(u) _ C,)21X] >! 1E2 [(X(U) _ a)IX] conditionally upon X, (8.14)

1ft(XS C,2 d > [f (X(s) - oa)dsl 2

a - IEJ (X(S) _ a)2ds > JE [.r (X(s) _ a)2 ds] > IE [(X(s) - a)ds], (8.15)

where (8.14) follows by Cauchy-Schwarz (equality in the last step of (8.15) would imply X(t) = a
for al t E [0,-r) which is impossible because we have excluded the case X(t) =_a). Inserting
(8.15) in (8.13) completes the proof. 0

Pro o rooito .2Lt #1)- =r*, let T#(2) be the sum of the cycle lenghts up
to and including the second accepted cycle, r# - T#(2) -T# (1) and so on. Then the T# (n) are
regeneration points for X (being obtained by randomised stopping of the initial regeneration
points) and there are X(t) of them before t. Let - denote averaging from 1 to V(t), and put

Z IT(-M X(s)ds, a* (t) =

Then the (Z*,r,Aj), i = 1,2,..., are i.i.d., af (t) is aregenerative estimator, and it is standard
that a*(t) and a, (t) are asymptotically equivalent in the sense that the difference is o(V'IT. Thus,
in the proof we may replace al(t) by al~)

Let f (Z, r) = Z/r, g(Z, r, A) = (I - b)f(Z, r) +bA and let fz, f,' and gZ, g,, gA denote the
partial derivatives evaluated at (IEZ#,]Er#) and (IEZ#,lE7#,EA), respectively. Then

a()=g(Y*,-f), a#(t) = f(7J#,T7A), f(E:Z#,IEr#) = g(IEZ#,IEr#,IEA) = a,

and applying the Delta method shows that aymptotically

al(t) ;z: a + fz(7Z* - IEZ#) + f,(-f# - IET#*),

p24(I a + g_7(Z - JEZ*) + Qr (-f# - lEr#) + 9A( 7 
- EA)

a a+(1 -b) (fz(Y* -lEZ) + f(-f - IE-r)) + b(- EA).

Interpreting A - fzZ# - frT# as a control on fzZ# + JTT#, standard results on linear control
variates therefore show that taking

b = Cov(fzZ# + f,7 -#, A - fzZ# - f, r#)
Var(A - fzZ# - f*
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will ensure a3 - I, and that we will have a3 < 1 unless the covariance in the definition of b
vanishes; if for nothing else, then because of the randomization in step 5 of Algorithm D we find
it hard to think of examples where this can happen.

To obtain an estimator b#(t) of b, just estimate the 3 x 3 covariance matrix of (Z#1-#, A) by
the empirical covariance matrix (as when doing regression-adjustion for linear control variates),

note that
1 IEZ#

fz = -- f E2#

can be estimated by inserting the empirical means, and insert these estimates in the definition
of b. 5
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